Руководство пилота по аэронавтике » Глава 4. Аэродинамика полета » Коэффициенты перегрузки » Перегрузка и скорость сваливания

Перегрузка и скорость сваливания

Load Factors and Stalling Speeds

Любой самолет, в рамках ограничений его конструкции, может уйти в сваливание при любой скорости полета. Когда достигается достаточно большой угол атаки, плавное обтекание воздуха по крылу разрывается и поток разделяется, вызывая резкое изменение летного качества крыла и внезапную потерю подъемной силы, которая приводит к сваливанию.

Исследование этого эффекта показало, что скорость сваливания самолета увеличивается пропорционально квадратному корню коэффициента перегрузки. Это означает, что самолет имеющий скорость сваливания при нормальной перегрузке 50 узлов может уйти в сваливание и при скорости в 100 узлов, если будет испытывать перегрузку в 4g. Если бы этот самолет мог бы выдержать перегрузку в 9g, то его скорость сваливания была бы 150 узлов. Пилот должен осознавать:

  • Опасность неумышленного ввода самолета в сваливание при крутом повороте или при спиральном спуске ;
  • Когда самолет умышленно введен в сваливание при скорости превышающей его допустимую конструктивную скорость маневрирования, самолет подвергается огромной перегрузке.

Рисунки 4-45 и 4-46 показывают, что при крене самолета, больше чем 72 ° при повороте он испытывает перегрузку 3g, и соответствующим образом возрастает и скорость сваливания. Если такой поворот производить на самолете со скоростью сваливания 45 узлов в нормальных условиях, то при повороте необходимо поддержать скорость не менее 75 узлов, чтобы не произошло сваливания. Схожий эффект наблюдается при резком кабрировании или при любом маневре, в результате которого перегрузка становится больше чем 1g. Эта внезапная, неожиданная потеря контроля над самолетом, особенно при крутом вираже или при резкой даче на себя руля высоты около земли, повлекла за собой много несчастных случаев.

Так как при увеличении скорости в два раза, перегрузка увеличивается как показательная функция степени 2, то на конструкцию самолета при сваливании на больших скоростях будут действовать огромные нагрузки.

Максимальная скорость, при которой самолет может безопасно перейти в режим сваливания, теперь определяется для всех новых конструкций самолетов. Эту скорость называют «эволютивной скоростью» (Vа) и она должна быть указана в одобренном Федеральным Авиационным Агентством (США) Руководстве летной эксплуатации / Руководстве по производству полетов (РЛЭ/СРП) для всех современных самолетов. Для более старых самолетов гражданской авиации эта скорость приблизительно в 1.7 раза больше скорости нормального сваливания. Таким образом, старый самолет, который обычно переходит в сваливание при скорости 60 узлов, никогда не должен переходить в режим сваливания при скорости выше 102 узла (60 узлов x 1.7 = 102 узла). Самолет с нормальной скоростью сваливания 60 узлов, сваливаясь при 102 узлах, подвергается перегрузке, равной квадрату увеличения скорости или 2.89g (1.7×1.7 = 2.89) (вышеуказанные числа является приближенными, и не должны рассматриваться как руководство при решении каких-то задач. Эволютивная скорость должна быть определена исходя из эксплуатационных ограничений каждого конкретного самолета, указываемых производителем).

Рисунок 4-46. Изменение скорости сваливания в зависимости от перегрузки.

Так как рычаги органов управления самолетом меняются от самолета к самолету (некоторые типы используют «уравновешенные» поверхности контроля, в то время как другие нет), давление, оказываемое пилотом на органы управления, не может быть принято как показатель коэффициента перегрузки, в различных самолетах. В большинстве случаев перегрузка может быть оценена опытным пилотом на основании ощущения придавленности к креслу. Коэффициенты перегрузки могут также быть измерены инструментом, называемым «акселерометром», но этот инструмент не распространен на учебных самолетах гражданской авиации. Важно развить способности ощущать перегрузку по ее влиянию на тело. Понимание этих принципов важно для развития способности оценки перегрузки.

Доскональное изучение перегрузки, вызванной различными углами крена при повороте и VA, помогает в предотвращении двух из самых серьезных типов несчастных случаев:

  1. Сваливание при резком повороте или неумелом маневрировании около земли
  2. Конструктивные повреждения во время воздушной акробатики или других резких маневров, происходящих при потере управления.

Any aircraft, within the limits of its structure, may be stalled at any airspeed. When a sufficiently high AOA is imposed, the smooth flow of air over an airfoil breaks up and separates, producing an abrupt change of flight characteristics and a sudden loss of lift, which results in a stall.

A study of this effect has revealed that the aircraft’s stalling speed increases in proportion to the square root of the load factor. This means that an aircraft with a normal unaccelerated stalling speed of 50 knots can be stalled at 100 knots by inducing a load factor of 4 Gs. If it were possible for this aircraft to withstand a load factor of nine, it could be stalled at a speed of 150 knots. A pilot should be aware:

  • Of the danger of inadvertently stalling the aircraft by increasing the load factor, as in a steep turn or spiral;
  • When intentionally stalling an aircraft above its design maneuvering speed, a tremendous load factor is imposed.

Figures 4-45 and 4-46 show that banking an aircraft greater than 72° in a steep turn produces a load factor of 3, and the stalling speed is increased significantly. If this turn is made in an aircraft with a normal unaccelerated stalling speed of 45 knots, the airspeed must be kept greater than 75 knots to prevent inducing a stall. A similar effect is experienced in a quick pull up, or any maneuver producing load factors above 1 G. This sudden, unexpected loss of control, particularly in a steep turn or abrupt application of the back elevator control near the ground, has caused many accidents.

Since the load factor is squared as the stalling speed doubles, tremendous loads may be imposed on structures by stalling an aircraft at relatively high airspeeds.

The maximum speed at which an aircraft may be stalled safely is now determined for all new designs. This speed is called the “design maneuvering speed” (VA) and must be entered in the FAA-approved Airplane Flight Manual/Pilot’s Operating Handbook (AFM/POH) of all recently designed aircraft. For older general aviation aircraft, this speed is approximately 1.7 times the normal stalling speed. Thus, an older aircraft which normally stalls at 60 knots must never be stalled at above 102 knots (60 knots x 1.7 = 102 knots). An aircraft with a normal stalling speed of 60 knots stalled at 102 knots undergoes a load factor equal to the square of the increase in speed, or 2.89 Gs (1.7×1.7 = 2.89 Gs). (The above figures are approximations to be considered as a guide, and are not the exact answers to any set of problems. The design maneuvering speed should be determined from the particular aircraft’s operating limitations provided by the manufacturer.)

Figure 4-46. Load factor changes stall speed.

Since the leverage in the control system varies with different aircraft (some types employ “balanced” control surfaces while others do not), the pressure exerted by the pilot on the controls cannot be accepted as an index of the load factors produced in different aircraft. In most cases, load factors can be judged by the experienced pilot from the feel of seat pressure. Load factors can also be measured by an instrument called an “accelerometer,” but this instrument is not common in general aviation training aircraft. The development of the ability to judge load factors from the feel of their effect on the body is important. A knowledge of these principles is essential to the development of the ability to estimate load factors.

A thorough knowledge of load factors induced by varying degrees of bank and the VA aids in the prevention of two of the most serious types of accidents:

  1. Stalls from steep turns or excessive maneuvering near the ground
  2. Structural failures during acrobatics or other violent maneuvers resulting from loss of control

Система Orphus